Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: JZ1026). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Abrahams, S. C. (1956). Q. Rev. Chem. Soc. 10, 407-436.
- Ahmed, F. R. & Singh, P. (1973). NRC Crystallographic Programs for the IBM/360 System. Accession Nos. 133–147. J. Appl. Cryst. 6, 309–346.
- Baldwin, J. J., Claremon, D. A., Lumma, P. K., McClure, D. E., Rosenthal, S. A., Winquist, R. J., Faison, E. P., Kaczorowski, G. J., Trumble, K. J. & Smith, G. M. (1987). J. Med. Chem. 30, 690–695.
- Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. 30, 1559-1578.
- Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
- Hannick, S. M. & Kishi, Y. (1983). J. Org. Chem. 48, 3833-3835.
- Kettmann, V., Dřimal, J. & Světlik, J. (1995). In preparation.
- Kojić-Prodić, B., Kvick, A. & Ružić-Toroš, Ž. (1976). Acta Cryst. B32, 1090-1095.
- Kojić-Prodić, B., Liminga, R., Šljukić, M & Ružić-Toroš, Ž. (1974). Acta Cryst. B30, 1550–1555.
- Pavelčik, F. (1987). XP21. A Computer Program for Syntex P21 Data Reduction. Faculty of Pharmacy, Comenius University, Bratislava, Slovakia.
- Read, G., Randal, R., Hursthouse, M. B. & Short, R. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1103–1107.
- Sulmon, P., De Kimpe, N., Schamp, N. & Declercq, J.-P. (1989). J. Org. Chem. 54, 2587–2590.
- Světlik, J., Hanuš, V. & Bella, J. (1991). J. Chem. Res. (S), pp. 4-5.

the aromatic C to ester O atoms and in the dihedral angle between the planes of the benzoxazole system and the phenyl group attached to it. The torsion angle is $-23.6(3)^{\circ}$ for compound (1) and 32.2(7) and $-67.0(6)^{\circ}$ for the two independent molecules of (2). These differences, which are probably due to packing effects, do not affect the pattern of bond lengths and angles within the molecules to any significant extent.

Comment

The title compounds, (1) and (2), are monomer precursors of comb-like polymers, the investigation of which is underway in our laboratory. Owing to the expected planarity and π -electron cojugation in the 2phenylbenzoxazole moiety and to the strong electronwithdrawing effect of the nitro group, these polymers are likely to show non-linear optical properties of the second order (Williams, 1984). Compounds (1) and (2) were prepared by interfacial esterification of 4-(6-acryloyloxyhexyloxy)benzoyl chloride with 2-(4-nitrophenyl)-6hydroxybenzoxazole and 2-(4-hydroxyphenyl)-6-nitrobenzoxazole, respectively. Detailed descriptions of both the syntheses of the nitrohydroxybenzoxazoles by intramolecular cyclization of parent Schiff bases and the esterification procedure are planned (Centore, Panunzi, Roviello & Sirigu, 1996).

Both compounds are mesogenic, but notwithstanding their closely related chemical natures, their mesophasic behaviours are quite different. Compound (1) is nematogenic and the interval of stability of the mesophase is rather small (melting point 407 K, isotropization temperature 415.1 K). Compound (2), on the other hand, melts at 375 K to a smectic A phase that trasforms, at 441 K, into a nematic phase; isotropization of this latter phase is at 463 K. Furthermore, both compounds are polymorphic in the solid state. The crystal structures reported in this paper refer to a low-temperature polymorph of (1) and to a high-temperature polymorph of (2). For compound (1), in particular, the low-temperature polymorph transforms, at 397 K, into another crystal phase that melts at 407 K.

Bond lengths and angles in the molecules of compounds (1) and (2) have close to expected values, with the exception of some bond lengths in the acryl-

Acta Cryst. (1996). C52, 1499-1503

ANGELA TUZI

Abstract

centore@chemna.dichi.unina.it

Two Mesogenic Nitrobenzoxazoles

ROBERTO CENTORE,* MARIA ROSARIA CIAJOLO AND

Dipartimento di Chimica, Universitá di Napoli 'Federico

The crystal and molecular structures of two iso-

meric benzoxazoles, 2-(4-nitrophenyl)benzoxazol-6-yl

4-(acryloyloxyhexyloxy)benzoate, C₂₉H₂₆N₂O₈, (1), and

4-(6-nitro-2-benzoxazolyl)phenyl 4-(acryloyloxyhexyloxy)benzoate, $C_{29}H_{26}N_2O_8$, (2), are reported. Both com-

pounds are mesogenic and are of potential interest for

non-linear optics. Some differences in the molecular

conformations of the two compounds are observed,

mainly in the torsion angle around the bond from

II', Via Mezzocannone 4, 80134 Napoli, Italy. E-mail:

(Received 26 July 1995; accepted 16 October 1995)

Printed in Great Britain - all rights reserved

Acta Crystallographica Section C ISSN 0108-2701 © 1996

Fig. 1. ORTEPII view (Johnson, 1976) of the molecule of compound (1). Displacement ellipsoids are shown at the 50% probability level. C atoms are labelled by number only.

Fig. 2. ORTEPII view (Johnson, 1976) of the two independent molecules, A and B, of compound (2). Displacement ellipsoids are shown at the 50% probability level. C atoms are labelled by number only.

ovloxy group of molecules A and B of (2); these distances, however, are of low accuracy because of the high thermal motion of the atoms. Bond lengths and angles within the 2-phenylbenzoxazole group are in close agreement with those previously found in a related compound (Centore, 1994). In particular, some deviations from 120° are observed in the bond angles within the benzene ring of the benzoxazole group [C17-C18-C19 113.3 (1) and C20-C19-C18 $125.0(2)^{\circ}$ for (1), and C27A—C28A—C29A 112.6(4) and C24A—C29A—C28A 125.9 (4)° for molecule A of (2) and C27B-C28B-C29B 112.6 (5) and C24B-C29B—C28B 124.7 (4)° for molecule B of (2)]. Similar deviations are also observed around the C23 atom of the imino group [C24—C23—N1 126.2 (2)° for (1), and C20A-C23A-N1A 128.0(4) and C20B-C23B-N1B 128.7 (5)° for (2)]; this effect might be a consequence of the repulsion between the lone pair of electrons on the N atom and the ortho H atom of the 2phenyl group. The benzoxazole group and the adjacent 2-phenyl group are nearly coplanar in compound (2) [dihedral angles of 3.3(6) and $7.5(2)^{\circ}$ for molecules of A and B, respectively], while in (1) a dihedral angle of $20.2(1)^{\circ}$ is observed between these groups. Such deviations from planarity are not surprising because of the low torsional barrier around the bond linking the benzoxazole and 2-phenyl groups (Welsh, Bhaumik & Mark, 1984). The orientation of the benzovloxy group with respect to the phenylbenzoxazole group is defined by the torsion angle around the C-O aryloxy bond to the ester group. A small value, compared to theoretical predictions (Hummel & Flory, 1980), is observed in compound (1) $[C16-O5-C17-C18 - 23.6(3)^{\circ}]$ and in molecule B of compound (2) [C16B-O4B-C17B-C22B 32.2 $(7)^{\circ}$], while a larger value is observed in molecule A of compound (2) [C16A—O4A—C17A—C22A $-67.0(6)^{\circ}$]. Furthermore, in the first two cases, an increase in the bond angle at the aryloxy O atom of the ester group is observed [C16-O5-C17 126.0(1) and C16B—O4B—C17B 123.9 (4)° as opposed to C16A— O4A—C17A 117.2 (4)° in molecule A of (2)], probably as a result of the repulsion between the carbonyl O atom and the ortho H atom on the phenyl group [H on C18 for compound (1) and H on C22B for compound (2)].

The conformation of the aliphatic chain is all-*trans* planar in both compound (1) and molecule *B* of compound (2), but one *gauche*-type torsion angle is observed in molecule *A* of compound (2) [C7A—C8A—C9A—O3A 60.7 (6)°]. This latter could be simply a packing effect, resulting in a more linear molecular shape.

Experimental

The preparation of compounds (1) and (2) will be described elsewhere (Centore, Panunzi, Roviello & Sirigu, 1996)

Compound (1) Crystal data		C9 C10 C11	1.0637 (3) 1.0133 (3) 0.9494 (3)	0.5823 0.3962 0.4663	$\begin{array}{cccc} (2) & 0.2378 (2) \\ (2) & 0.2701 (2) \\ (2) & 0.3520 (2) \\ (2) & 0.4555 (2) \end{array}$	0.0725 (6) 0.0612 (6) 0.0684 (6)
$C_{29}H_{26}N_2O_8$	Cu $K\alpha$ radiation	C12 C13	0.8961 (3)	0.4038	(2) 0.4055(2) (2) 0.3780(2)	0.0654 (6)
$M_r = 530.54$	$\lambda = 1.54178 \text{ Å}$	C13	0.9009(3)	0.2729	(2) 0.3780(2) (2) 0.2948(2)	0.0634(6)
Triclinic	Cell parameters from 25	C15	1.0236 (3)	0.2647	(2) 0.2413(2)	0.0711(6)
PĪ	reflections	C16	0.8452 (3)	0.2116	(2) 0.4368 (2)	0.0618(6)
a = 8.744(2) Å	$\theta = 15.02 - 24.77^{\circ}$	C17	0.7821 (3)	0.0024	(2) 0.4187 (2)	0.0601 (6)
h = 11.087(2) Å	$v = 0.707 \text{ mm}^{-1}$	C18	0.7544 (3)	0.0148	(2) 0.5113 (2)	0.0618(6)
b = 11.037(2) A	$\mu = 0.797 \text{ mm}$	C19	0.6975 (3)	-0.0873	(2) 0.5199(1)	0.0560(6)
c = 14.511(5) A	I = 295 K	C20	0.6712 (3)	-0.1919	$\begin{array}{ccc} (2) & 0.4460(2) \\ (2) & 0.2524(2) \end{array}$	0.0613 (6)
$\alpha = 106.16(2)^{\circ}$	Platelet	C21 C22	0.6959 (3)	-0.1992	$\begin{array}{ccc} (2) & 0.3534(2) \\ (2) & 0.3407(2) \end{array}$	0.0734(7)
$\beta = 102.98 (2)^{\circ}$	$0.43 \times 0.17 \times 0.036 \text{ mm}$	C22 C23	0.7510(3)	-0.0998	(2) 0.3407(2) (2) 0.5710(2)	0.0099(7)
$\gamma = 75.31 (2)^{\circ}$	Yellow	C23	0.0178(3)	-0.2217	(2) 0.5719(2) (2) 0.6426(2)	0.0563(0)
$V = 1288.9(5) Å^3$		C25	0.5077(3)	-0 1919	(2) 0.0420(2) (2) 0.7277(2)	0.0605(6)
7 - 2		C26	0.4670(3)	-0.2414	(2) 0.7890(2)	0.0628(7)
$D = 1.367 \text{ Mg m}^{-3}$		C27	0.4652 (3)	-0.3705	(2) 0.7642 (2)	0.0596 (6)
$D_x = 1.307$ Wig in		C28	0.5156(3)	-0.4521	(2) 0.6808 (2)	0.0663 (6)
D_m not measured		C29	0.5687 (3)	-0.4016	(2) 0.6202 (2)	0.0641 (6)
Data collection			0.01			
Enraf–Nonius CAD-4	$\theta_{\rm max} = 75.0^{\circ}$	Table	e 2. Selecte	d geometr	ic parameters (A,	, °) for (1)
diffractometer	$h = -10 \rightarrow 10$	01—C3		1.198 (3)	NI-C23	1.282 (3)
$\omega I \theta$ scans	$k = -13 \rightarrow 13$	O2—C4		1.454 (3)	N2—C27	1.464 (4)
Absorption correction:	$l = 0 \rightarrow 18$	O3—C9		1.435 (3)	C1—C2	1.319 (4)
none	$i = 0 \rightarrow 10$	O3—C10		1.365 (3)	C2—C3	1.473 (3)
		04C16		1.192 (3)	C17—C18	1.381 (3)
5292 measured reflections	frequency: 120 min	05-016		1.355 (2)	C17—C22	1.393 (3)
5292 independent reflections	intensity decay: 0.5%	05-01/		1.393 (3)	C18-C19	1.391 (4)
3362 observed reflections		06-023		1.379(3) 1.378(3)	$C_{19} = C_{20}$	1.372(3) 1 385(4)
$[I > 3\sigma(I)]$		07—N2		1.215(2)	$C_{20} = C_{21}$	1.382 (4)
		08		1.220 (3)	C23—C24	1.464 (4)
Refinement		N1-C20		1.392 (3)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Refinement on F	$\Delta \rho_{\rm max} = 0.347 \ {\rm e} \ {\rm \AA}^{-3}$	C3-02-	C4	116.8 (2)	04C16C13	126.4 (2)
R = 0.049	$\Delta \rho_{\rm min} = -0.174 \ {\rm e} \ {\rm \AA}^{-3}$	C9-03-	-010	118.0 (2)	05-016-013	109.6 (2)
wR = 0.064	Extinction correction:	C10-05	-017	120.0(1)	05 - 017 - 018	125.3(1)
S = 1.759	Staut & Janson (1090)	C19-00	-223	103.1(2) 104.3(2)	C18 - C17 - C22	111.1(2) 123.6(2)
3 = 1.738	Stout & Jensen (1989)	07—N2-	-08	104.5(2) 1230(2)	C17-C18-C19	113.3(1)
3362 reflections	Extinction coefficient:	C1-C2-	-C3	120.9 (3)	06-C19-C20	107.8 (3)
457 parameters	$1.3(4) \times 10^{-6}$	01—C3–	02	123.0 (2)	C18-C19-C20	125.0(2)
All H-atom parameters	Atomic scattering factors	01—C3–	C2	125.3 (3)	N1-C20-C19	109.2 (2)
refined	from International Tables	O2—C3–	C2	111.6 (2)	C19—C20—C21	120.0(2)
$w = 4F_{0}^{2}/[\sigma^{2}(F_{0}^{2})]$	for X-ray Crystallography	O3—C9-		106.4 (2)	C20-C21-C22	117.2 (2)
$+ (0.04F_{2}^{2})^{2}$	(1974, Vol. IV, Table	03-C10	-CII	124.7 (2)	C17 - C22 - C21	120.7 (3)
$(\Delta/\sigma) = 0.01$	2 2B)	03-010		115.1(2)	00-023-NI	115.0(2)
(2 m) = 0.01	<i>2.22)</i>	C12-C1	3-C16	122.2 (2)	C_{23} C_{24} C_{25} C_{25}	120.2(2) 122.3(2)
				_/		

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

 $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

Compound	(2)
----------	-----

C17—O5—C16—C13 C16—O5—C17—C22 O7—N2—C27—C26

-172.3 (2) 158.0 (2)

6.4 (4)

	x	у	z	U_{eq}	Crystal data
01	1.3245 (3)	1.0517 (2)	-0.0910(1)	0.1091 (6)	
O2	1.2266 (2)	1.0825(1)	0.0444 (1)	0.0745 (5)	$C_{29}H_{26}N_2O_8$
O3	1.0695 (2)	0.4466 (1)	0.2117(1)	0.0747 (5)	$M_r = 530.54$
04	0.7984 (2)	0.2622 (2)	0.5121(1)	0.0913 (6)	Triclinic
O5	0.8475 (2)	0.0867(1)	0.3912(1)	0.0734 (5)	PĪ
06	0.6602 (2)	-0.1035 (1)	0.6025(1)	0.0621 (5)	
07	0.3476 (2)	-0.3506 (2)	0.8965(1)	0.1064 (6)	a = 11.477(1) Å
08	0.4195 (2)	-0.5397 (2)	0.8101(1)	0.1078 (6)	b = 15.123 (2) A
N1	0.6215 (2)	-0.2771 (2)	0.4820(1)	0.0666 (6)	c = 17.242 (2) Å
N2	0.4063 (2)	-0.4236 (2)	0.8280(1)	0.0735 (6)	$\alpha = 105.78 (1)^{\circ}$
Cl	1.2995 (4)	1.3221 (2)	-0.0494 (2)	0.0936 (9)	a = 105.70 (1)
C2	1.2487 (3)	1.2639 (2)	0.0023 (2)	0.0730(7)	$\beta = 99.22(1)$
C3	1.2710(3)	1.1231 (2)	-0.0218 (2)	0.0695 (7)	$\gamma = 107.83 (1)^{\circ}$
C4	1.2488 (3)	0.9446 (2)	0.0306 (2)	0.0766 (6)	$V = 2643 (20) \text{ Å}^3$
C5	1.1902 (3)	0.9221 (2)	0.1131 (2)	0.0773 (6)	7 = 4
C6	1.2002 (3)	0.7796 (2)	0.1014 (2)	0.0786 (6)	$D = 1.222 \text{ M}_{\odot} \text{ m}^{-3}$
C7	1.1368 (3)	0.7520 (2)	0.1811 (2)	0.0776 (6)	$D_x = 1.555 \text{ Mg m}$
C8	1.1357 (3)	0.6102 (2)	0.1625 (2)	0.0704 (6)	D_m not measured

Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 25 reflections $\theta = 15.16-25.46^{\circ}$ $\mu = 0.777$ mm⁻¹ T = 295 K Platelet $0.43 \times 0.17 \times 0.05$ mm Pale yellow

C12—C13—C16—O5 172.1 (2) O6—C23—C24—C29 -163.2 (2)

TWO ISOMERS OF C29H26N2O8

0.093 (2)

0.089 (2)

0.082 (2)

0.084(2)

0.075 (2)

0.160(2)

0.109(1)

-0.2350(3)

-0.2935 (3)

-0.2663(3)

-0.1832 (3)

-0.1289 (3)

-1.0710(3)

-0.9676(2)

Data collection		O3 <i>B</i>	-0.0038 (3)	-0.1371 (2)	-0.4843 (2)
	1575 shows day for the stars	O4 <i>B</i>	0.1047 (3)	0.0831 (2)	-0.0998 (2)
Enraf–Nonius CAD-4	45/5 observed renections	O5B	0.2591 (3)	0.0218 (3)	-0.0965 (2)
diffractometer	$[I > 3\sigma(I)]$	O6B	0.0609 (3)	0.2683 (2)	0.2662 (2)
ω/θ scans	$\theta_{\rm max} = 73^{\circ}$	07 <i>B</i>	0.0871 (4)	0.4263 (4)	0.6252 (2)
Absorption correction:	$h = -14 \rightarrow 14$	08 <i>B</i>	-0.0740 (4)	0.3985 (3)	0.5275 (2)
	$L = 19 \cdot 19$	N1 <i>B</i>	0.2633 (3)	0.2798 (3)	0.3055 (2)
none	$k = -10 \rightarrow 10$	N2 <i>B</i>	0.0333 (4)	0.4021 (3)	0.5528 (2)
10 501 measured reflections	$l = 0 \rightarrow 21$	C1 <i>B</i>	-0.7120 (5)	-0.4897 (4)	-1.1851 (4)
10 501 independent	1 standard reflection	C2B	-0.6777 (5)	-0.4410 (4)	1.0977 (4)
reflections	frequency: 120 min	C3B	-0.5494 (5)	-0.4080 (4)	-1.0474 (3)
	intensity decay: 0.4%	C4 <i>B</i>	-0.4044 (5)	-0.3195 (4)	-0.9144 (3)
	Intensity decay. 0.470	C5B	-0.4019 (5)	-0.2705 (4)	-0.8275 (3)
D.C.		C6B	-0.2710 (5)	-0.2473 (4)	-0.7687 (3)
Refinement		C7B	-0.2582 (4)	-0.1957 (4)	-0.6773(3)
Refinement on E	$(\Delta/\sigma) = -0.02$	C8B	-0.1341 (4)	-0.1876 (3)	-0.6217 (3)
	$(\Delta f) = 0.02$	C9B	-0.1199 (4)	-0.1366 (4)	-0.5307 (3)
K = 0.069	$\Delta \rho_{\rm max} = 0.715 \ {\rm e \ A}$	C10B	0.0314 (4)	-0.0945 (3)	-0.3993 (3)
wR = 0.093	$\Delta \rho_{\rm min} = -0.273 \ {\rm e} \ {\rm A}^{-3}$	C11 <i>B</i>	-0.0387 (4)	-0.0502 (3)	-0.3546 (3)
S = 2.505	Extinction correction: none	C12B	0.0069 (4)	-0.0090 (3)	-0.2682 (3)
4575 reflections	Atomic scattering factors	C13B	0.1187 (4)	-0.0123 (3)	-0.2273 (3)
	Atomic scattering factors	C14 <i>B</i>	0.1863 (4)	-0.0588(3)	-0.2742 (3)
703 parameters	from International Tables	C15B	0.1419 (4)	0.0992 (3)	-0.3595 (3)
H-atom parameters not	for X-ray Crystallography	C16B	0.1703 (4)	0.0304 (3)	-0.1367 (3)
refined	(1974, Vol. IV, Table	C17 <i>B</i>	0.1273 (4)	0.1251 (3)	-0.0131 (3)
$w = A E^2 (E^2)$	2 2B)	C18 <i>B</i>	0.0230 (4)	0.1335 (4)	0.0135 (3)
$w = 4r_0 r_0 (r_0)$	2.20)	C19B	0.0332 (4)	0.1758 (4)	0.0965 (3)
$+ (0.04F_{o})^{2}$		C20B	0.1495 (4)	0.2092 (3)	0.1539 (3)
		C11 D	0.2542(4)	0 2017 (4)	0 1266 (2)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$					
	x	У	z	U_{eq}	
01 <i>A</i>	0.7788 (4)	0.3012(3)	1.2781 (3)	0.165 (2)	
O2A	0.6087 (3)	0.2405 (3)	1.1712(2)	0.100 (1)	
O3A	0.5386(3)	0.0098 (2)	0.7013 (2)	0.092 (1)	
04A	0.2285 (3)	-0.2336 (2)	0.3255 (2)	0.089 (1)	
O5A	0.1922 (3)	-0.0928 (2)	0.3401 (2)	0.103 (1)	
06A	-0.1413 (3)	-0.4119 (2)	-0.0426 (2)	0.083 (1)	
07A	-0.4095 (4)	-0.5880 (4)	-0.4032 (2)	0.164 (2)	
08A	0.5040 (4)	-0.5579 (4)	-0.3081 (3)	0.155 (2)	
N1A	0.0414 (3)	-0.4021 (3)	-0.0792 (2)	0.080 (1)	
N2A	-0.4086 (4)	-0.5580(3)	-0.3304 (3)	0.114 (2)	
C1A	0.6382 (7)	0.3716(5)	1.3929 (5)	0.145 (4)	
C2A	0.5921 (5)	0.3303 (4)	1.3035 (4)	0.119 (3)	
C3A	0.6709 (5)	0.2899 (4)	1.2519(3)	0.100 (2)	
C4A	0.6829 (4)	0.2039 (4)	1.1179(3)	0.094 (2)	
C5A	0.5987 (5)	0.1538 (4)	1.0307 (3)	0.095 (2)	
C6A	0.6745 (5)	0.1139 (4)	0.9730(3)	0.092 (2)	
C7A	0.5960 (5)	0.0585 (4)	0.8820(3)	0.095 (2)	
C8A	0.6751 (5)	0.0217 (4)	0.8261 (3)	0.099 (2	
C9A	0.5963 (5)	-0.0475 (4)	0.7374 (3)	0.106 (2	
C10A	0.4631 (4)	-0.0365 (4)	0.6213(3)	0.082 (2	
C11A	0.4323 (5)	-0.1339 (3)	0.5739(3)	0.089 (2	
C12A	0.3562 (5)	-0.1711 (4)	0.4919(3)	0.087 (2	
C13A	0.3111 (4)	-0.1093 (3)	0.4589 (3)	0.077 (2	
C14A	0.3416 (4)	-0.0114 (3)	0.5079(3)	0.081 (2	
C15A	0.4177 (4)	0.0250 (3)	0.5891 (3)	0.082 (2	
C16A	0.2366 (4)	-0.1413 (3)	0.3710(3)	0.081 (2	
C17A	0.1661 (4)	-0.2698 (3)	0.2401 (3)	0.082 (2	
C18A	0.2371 (4)	-0.2857 (3)	0.1847 (3)	0.085 (2	
C19A	0.1781 (4)	-0.3242 (3)	0.1001 (3)	0.081 (2	
C20A	0.0482 (4)	-0.3459 (3)	0.0715(3)	0.075 (2	
C21A	-0.0203 (4)	0.3301 (4)	0.1288 (3)	0.094 (2	
C22A	0.0395 (4)	-0.2913 (4)	0.2138 (3)	0.103 (2	
C23A	-0.0121 (4)	-0.3867 (3)	0.0186(3)	0.079 (2	
C24A	-0.0588 (4)	-0.4418(3)	-0.1508 (3)	0.076 (2	

-0.4744 (4)

-0.5143(4)

-0.5172(3)

-0.4831(4)

-0.4479 (3)

-0.4258 (4)

-0.3532 (3)

Um =	$(1/3)\Sigma_i\Sigma_iU_{ii}a^*a^*a_{ii}a_{ii}$	

05 <i>B</i>	0.2591 (3)	0.0218 (3)	-0.0965 (2)	0.121(1)
06B	0.0609 (3)	0.2683 (2)	0.2662 (2)	0.081(1)
07 <i>B</i>	0.0871 (4)	0.4263 (4)	0.6252 (2)	0.152 (2)
08 <i>B</i>	-0.0740 (4)	0.3985 (3)	0.5275 (2)	0.157 (2)
N1 <i>B</i>	0.2633 (3)	0.2798 (3)	0.3055 (2)	0.092 (2)
N2 <i>B</i>	0.0333 (4)	0.4021 (3)	0.5528 (2)	0.116 (2)
C1 <i>B</i>	-0.7120 (5)	-0.4897 (4)	-1.1851 (4)	0.132 (3)
C2B	-0.6777 (5)	-0.4410 (4)	1.0977 (4)	0.115 (3)
C3B	-0.5494 (5)	-0.4080 (4)	-1.0474 (3)	0.105 (2)
C4B	-0.4044 (5)	-0.3195 (4)	-0.9144 (3)	0.111 (3)
C5B	-0.4019 (5)	-0.2705 (4)	-0.8275 (3)	0.106 (2)
C6B	-0.2710 (5)	-0.2473 (4)	-0.7687 (3)	0.093 (2)
C7B	-0.2582 (4)	-0.1957 (4)	-0.6773 (3)	0.094 (2)
C8 <i>B</i>	-0.1341 (4)	-0.1876 (3)	-0.6217 (3)	0.088 (2)
C9B	-0.1199 (4)	-0.1366 (4)	-0.5307 (3)	0.085 (2)
C10B	0.0314 (4)	-0.0945 (3)	-0.3993 (3)	0.078 (2)
C11 <i>B</i>	-0.0387 (4)	-0.0502 (3)	-0.3546 (3)	0.085 (2)
C12B	0.0069 (4)	-0.0090 (3)	-0.2682 (3)	0.084 (2)
C13B	0.1187 (4)	-0.0123 (3)	-0.2273 (3)	0.077 (2)
C14B	0.1863 (4)	-0.0588 (3)	-0.2742 (3)	0.084 (2)
C15B	0.1419 (4)	0.0992 (3)	-0.3595 (3)	0.080 (2)
C16B	0.1703 (4)	0.0304 (3)	-0.1367 (3)	0.085 (2)
C17B	0.1273 (4)	0.1251 (3)	-0.0131 (3)	0.084 (2)
C18B	0.0230 (4)	0.1335 (4)	0.0135(3)	0.093 (2)
C19B	0.0332 (4)	0.1758 (4)	0.0965 (3)	0.089 (2)
C20B	0.1495 (4)	0.2092 (3)	0.1539 (3)	0.073 (2)
C21 <i>B</i>	0.2542 (4)	0.2017 (4)	0.1266(3)	0.094 (2)
C22B	0.2455 (4)	0.1606 (4)	0.0434 (3)	0.100 (2)
C23B	0.1640 (4)	0.2526 (3)	0.2431 (3)	0.080 (2)
C24B	0.2253 (4)	0.3158 (4)	0.3767 (3)	0.082 (2)
C25B	0.2910 (5)	0.3516 (4)	0.4613 (3)	0.100 (2)
C26B	0.2248 (5)	0.3802 (4)	0.5175 (3)	0.102 (2)
C27B	0.1012 (5)	0.3725 (4)	0.4889 (3)	0.090 (2
C28B	0.0331 (4)	0.3369 (4)	0.4056 (3)	0.087 (2
C29B	0.1011 (4)	0.3082 (3)	0.3523 (3)	0.074 (2

0.094 (1) 0.099(1)

Table 4. Selected geometric parameters (Å, °) for (2)

1.190 (7) 01B-C3B 1.191 (8) 01A-C3A 02A-C3A 1.339 (5) O2B-C3B 1.343 (6) C6B-C7B C6A-C7A 1.531 (6) 1.517(7) 02A-C4A 1.463 (7) O2B—C4B 1.442 (6) O3A—C9A 1.446 (8) O3B-C9B 1.444 (6) O3A-C10A 1.366 (5) O3B-C10B 1.365 (5) O4A-C16A 1.369 (6) O4B-C16B 1.361 (6) 04A-C17A 1.402 (5) O4B-C17B 1.400 (5) 1.198 (7) O5B-C16B 1.200 (6) O5A-C16A O6A-C23A 1.374 (5) 1.374 (6) O6B-C23B O6B-C29B O6A-C29A 1.378 (5) 1.382 (5) 07B-N2B 07A-N2A 1.211 (6) 1.200 (5) 08B-N2B 1.218 (7) 08A-N2A 1.218 (6) N1A-C23A 1.299 (6) N1B-C23B 1.306 (5) N1A-C24A 1.389 (5) N1B-C24B 1.395 (6) N2A-C27A 1.467 (6) N2B-C27B 1.497 (7) CIA-C2A 1.435 (9) C1B-C2B 1.413 (8) C2B-C3B 1.441 (7) C2A-C3A 1.511 (9) C13B-C16B 1.459 (6) C13A-C16A 1.482 (6) C14B—C15B C20B—C23B 1.385 (6) 1.369 (6) C14A-C15A C20A-C23A 1.464 (6) 1.458 (6) C24A-C25A 1.393 (6) C24B-C25B 1.399 (6) C24A-C29A 1.391 (7) C24B-C29B 1.381(7) C25B-C26B 1.393 (6) 1.382 (8) C25A-C26A C26B-C27B C26A-C27A 1.389 (7) 1.382 (8) 1.391 (7) C27B-C28B 1.388 (6) C27A-C28A C28B-C29B 1.365 (7) C28A-C29A 1.364 (6) C3A-O2A-C4A 115.6 (4) C3B-O2B-C4B 115.8 (4) C9A-O3A-C10A 116.7 (4) C9B-O3B-C10B 118.5 (4) C16A—O4A—C17A C23A—O6A—C29A C16B---O4B---C17B 123.9 (4) 117.2 (4) C23B-06B-C29B 104.3 (3) 104.1 (3) C23B-N1B-C24B C23A-N1A-C24A 104.0 (4) 104.8 (4) 122.7 (4) O7B-N2B-O8B 124.3 (5) 07A—N2A—O8A 125.7 (5) 124.8 (5) 01B-C3B-C2B 01A-C3A-C2A 02B-C3B-C2B 113.6(5) 02A-C3A-C2A 113.6 (4) O3B-C10B-C11B O3A-C10A-C11A 125.7 (5) 123.6 (4)

C25A

C26A

C27A

C28A

C29A

01*B*

O2*B*

-0.0612(4)

-0.1790 (4)

-0.2872(4)

-0.2893 (4)

-0.1718 (4)

-0.4643 (4)

-0.5310(3)

O3AC10AC15A	113.4 (4)	O3BC10BC15B	115.2 (4)
C12AC13AC16A	122.9 (4)	C12BC13BC16B	122.7 (5)
C14AC13AC16A	117.0 (5)	C14BC13BC16B	118.0 (4)
O4A-C16A-C13A	111.9 (5)	O4BC16BC13B	112.1 (4)
O4AC17AC18A	117.4 (4)	O4BC17BC18B	115.0 (4)
O5AC16AC13A	125.8 (4)	O5BC16BC13B	126.3 (5)
O6AC23AN1A	115.4 (3)	O6BC23BN1B	114.3 (4)
N1A-C23A-C20A	128.0 (4)	N1BC23BC20B	128.7 (5)
N1AC24AC29A	109.8 (4)	N1BC24BC29B	108.7 (4)
C19AC20AC23A	119.4 (4)	C19BC20BC23B	121.0 (4)
C21A-C20A-C23A	121.6 (4)	C21B-C20B-C23B	119.3 (4)
C25A—C24A—C29A	119.4 (4)	C25BC24BC29B	121.1 (5)
C24AC25AC26A	117.5 (4)	C24BC25BC26B	116.0 (5)
C25A—C26A—C27A	119.4 (4)	C25BC26BC27B	120.2 (4)
C26A—C27A—C28A	125.2 (4)	C26BC27BC28B	125.4 (5)
C27AC28AC29A	112.6 (4)	C27BC28BC29B	112.6 (5)
O6AC29AC24A	106.8 (3)	O6BC29BC24B	107.9 (4)
C24AC29AC28A	125.9 (4)	C24BC29BC28B	124.7 (4)
C17AO4A		-176.6 (4)	
C16A04A	C17AC18A	115.2 (5)	
08A—N2A-	C27AC26A	-177.4 (5)	
C7AC8A	C9AO3A	60.7 (6)	
C14A—C13.	A-C16A-04A	170.8 (4)	
C19A—C20.	A-C23A-O6A	176.3 (4)	
C17 <i>B</i> O4 <i>B</i>		174.6 (4)	
C16B—O4B		- 150.8 (5)	
O8 <i>B</i> —N2 <i>B</i> -	C27 <i>B</i> C26 <i>B</i>	177.5 (5)	
C7BC8B	C9 <i>B</i> O3 <i>B</i>	177.4 (4)	
C14BC13	BC16BO4B	172.7 (4)	
C21 <i>B</i> C20	BC23BO6E	173.1 (5)	

For both compounds, data collection: *SDP* (Enraf-Nonius, 1985); cell refinement: *SDP*; data reduction: *SDP*. Program(s) used to solve structures: *RANTAN* in *MULTAN*11/82 (Main *et al.*, 1982) for (1); *SIR*92 (Altomare *et al.*, 1994) for (2). For both compounds, program(s) used to refine structures: *SDP*; molecular graphics: *ORTEP* (Johnson, 1976) and *PLUTO* (Motherwell & Clegg, 1978).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HA1148). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. Centore, R. (1994). Acta Cryst. C50, 260–263.
- Centore, R., Panunzi, B., Roviello, A. & Sirigu, A. (1996). J. Polym. Sci. Polym. Chem. Ed. Submitted.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Hummel, J. P. & Flory, P. J. (1980). Macromolecules, 13, 479-484.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
- Stout, G. H. & Jensen, L. H. (1989). X-ray Structure Determination, p. 393. New York: Wiley Interscience.
- Welsh, W. J., Bhaumik, D. & Mark, J. E. (1984). Macromolecules, 14, 947-950
- Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 1503-1505

[1,3]Dithiolo[4,5-*b*][1]benzothiophene-2-thione

M. PARVEZ,* S. T. E. MESHER AND P. D. CLARK

Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4. E-mail: parvez@acs.ucalgary.ca

(Received 21 July 1995; accepted 7 December 1995)

Abstract

The crystals of the title compound, $C_9H_4S_4$, are composed of essentially planar molecules separated by normal van der Waals distances, with S=C and S- C_{sp^2} (mean) bond distances of 1.641(7) and 1.741(11) Å, respectively.

Comment

Recently, there has been considerable interest in the area of organic superconductors (Williams *et al.*, 1992). The majority of these incorporate a tetrathiafulvalene (TTF) unit as the electron donor in the conducting salt. Our goal was to a synthesize a novel TTF unit starting from benzo[b]thiophene. This was accomplished by a series of reactions starting with the reduction of 2,3bis(methylthio)benzo[b]thiophene, (1) (Clark, Mesher & Primak, 1995). This reaction afforded a yellow oil, (2), that was not amenable to identification and which was reacted further with thiophosgene to afford a yellow solid, (3). Due to the ambiguous identification of (2), compound (3) could not be properly identified. Crystals were thus grown and an X-ray analysis performed, the results of which are described herein.

An ORTEPII (Johnson, 1976) drawing of the title compound, (3), is presented in Fig. 1, together with the atomic numbering scheme. The molecules are essentially planar, with a maximum deviation of 0.057 (9) Å (for atom C8) from the least-squares plane of the S and C atoms. The mean bond distances are: S=C 1.641 (7), S-C_{sp²} 1.741 (11), C-C_{aromatic} 1.386 (15), C_{sp²}-C_{sp²} 1.458 (9) and C=C 1.335 (8) Å. Similar S-C_{sp²} bond lengths have been reported for the crystal structures of both 2,3-bis(ethylsulfonyl)benzo-[b]thiophene [1.725 (1) Å; Parvez, Mesher & Clark, 1996a] and 2,3,6,7-tetrakis(methylthio)benzo[b]thiophene [1.741 (11) Å; Parvez, Mesher & Clark, 1996b].